Контрольная работа № 1

1 вариант

- 1). Для функции $f(x) = x^3 + 2x^2 1$. Найти f(0), f(1), f(-3), f(5).
- 2). Найти *D(v)*, если:

a).
$$y = -5x^5 + 2x + 3$$
; 6). $y = \frac{7x^3 - 1}{x + 4}$

$$\delta(x) = \frac{7x^3 - 1}{x + 4}$$

$$s$$
). $y = \sqrt{-x^2 + 5x + 6}$; s). $y = \frac{x}{\sqrt{x^2 - 4}}$

$$\varepsilon). \quad y = \frac{x}{\sqrt{x^2 - 4}}$$

3). Построить график функции:

a).
$$y = -x + 5$$

6).
$$y = x^2 - 2$$

По графику определить:

- а). Монотонность функции;
- б). Ограниченность функции;
- в). Минимальное (максимальное) значение функ-ЦИИ
- 4). Для заданной функции найти обратную:

a).
$$y = -2x + 3$$
;

a).
$$y = -2x + 3;$$
 6). $y = \frac{x-1}{2x-1}$

2 вариант

- 1). Для функции $f(x) = 3x^2 x^3 + 2$. Найти f(0), f(1), f(-3), f(5).
- 2). Найти *D(v)*, если:

a).
$$y = 4x^4 - 5x - 1;$$
 6). $y = \frac{3 - 2x^4}{x^2 - 3}$

$$(5). \quad y = \frac{3 - 2x^4}{x - 3}$$

8).
$$y = \sqrt{-x^2 - 4x + 5}$$
; $z = \frac{x - 1}{\sqrt{x^2 - 9}}$

e).
$$y = \frac{x-1}{\sqrt{x^2-9}}$$

3). Построить график функции:

a).
$$y = x - 7$$

$$\delta$$
). $y = -x^2 + 2$

По графику определить:

- а). Монотонность функции;
- б). Ограниченность функции;
- в). Минимальное (максимальное) значение функ-ЦИИ
- 4). Для заданной функции найти обратную:

a).
$$y = 5x - 4$$

$$\delta$$
). $y = \frac{3x+1}{x+2}$

Контрольная работа № 2

1 вариант

- 1). Вычислите:
- a). $\sin \frac{7\pi}{3}$, δ). $\cos \left(-\frac{5\pi}{4}\right)$,

$$e$$
). $tg\left(-\frac{13\pi}{6}\right)$, e). $ctg13,5\pi$

- ∂). $2 \sin 870^{\circ} + \sqrt{12} \cos 570^{\circ} tg^2 60^{\circ}$.
- Упростите:

$$ctgt \cdot \sin(-t) + \cos(2\pi - t)$$

3). Известно, что: $\sin t = \frac{4}{5}, \frac{\pi}{2} < t < \pi$.

Вычислить $\cos t$, tgt, ctgt.

4). Решите уравнение:

a).
$$\sin t = \frac{1}{2}$$
, 6). $\cos t = -\frac{\sqrt{3}}{2}$.

5). Докажите тождество: $\frac{ctgt}{tgt + ctgt} = \cos^2 t$.

2 вариант

1). Вычислите:

a).
$$\sin \frac{9\pi}{4}$$
, δ). $\cos \left(-\frac{4\pi}{3}\right)$,

$$e$$
). $tg\left(-\frac{7\pi}{6}\right)$, e). $ctg\left(\frac{5\pi}{4}\right)$

- ∂). $4\sin^2 120^\circ 2\cos 600^\circ + \sqrt{27}tg 660^\circ$.
- 2). Упростите:

$$tgt \cdot \cos(-t) + \sin(\pi + t)$$

3). Известно, что:

$$\sin t = \frac{3}{5}, \frac{\pi}{2} < t < \pi$$
.

Вычислить $\cos t$, tgt, ctgt.

4). Решите уравнение:

a).
$$\sin t = \frac{\sqrt{2}}{2}$$
, 6). $\cos t = -\frac{1}{2}$.

5). Докажите тождество:

$$\frac{tgt}{tgt + ctgt} = \sin^2 t.$$

Контрольная работа «Свойства и графики тригонометрических функций»

1 вариант

1). Найти наименьшее и наибольшее значения функций:

$$a$$
). $y = \sin x$ на отрезке $\left[\frac{\pi}{4}; \frac{5\pi}{4}\right]$;

б).
$$y = \cos x$$
 на отрезке $\left[-\frac{\pi}{3}; \pi \right]$.

2). Упростить выражение:

a).
$$\sin^2(\pi + t) - \sin^2(\pi - t)$$
;

$$6). \frac{\cos\left(\frac{\pi}{2}+t\right)}{\sin(\pi-t)\cdot tg(-t)}$$

3). Исследуйте функцию на четность:

$$y = \frac{ctg^2 x}{x^4 + 2x^2 + 2}$$

4). Постройте график функции:

$$y = \sin\left(x + \frac{\pi}{6}\right) - 1$$

5). Известно, что $f(x) = 2x^2 + 3x - 1$. Докажите, что $f(cosx) = 3cosx - 2sin^2x + 1$.

1 вариант

- 1). Найти наименьшее и наибольшее значения функций:
- a). $y = \sin x$ на отрезке $\left[\frac{\pi}{4}; \frac{5\pi}{4}\right]$;
- б). $y = \cos x$ на отрезке $\left[-\frac{\pi}{3}; \pi \right]$.
- 2). Упростить выражение:
- a). $\sin^2(\pi + t) \sin^2(\pi t)$;

$$6). \frac{\cos\left(\frac{\pi}{2} + t\right)}{\sin(\pi - t) \cdot tg(-t)}$$

3). Исследуйте функцию на четность:

$$y = \frac{ctg^2 x}{x^4 + 2x^2 + 2}$$

4). Постройте график функции:

$$y = \sin\left(x + \frac{\pi}{6}\right) - 1$$

5). Известно, что $f(x) = 2x^2 + 3x - 1$. Докажите, что $f(cosx) = 3cosx - 2sin^2x + 1$.

2 вариант

- 1). Найти наименьшее и наибольшее значения функций:
- a). $y = \sin x$ на отрезке $\left[\frac{\pi}{4}; \frac{5\pi}{3}\right]$;
- б). $y = \cos x$ на отрезке $\left[-\frac{2\pi}{3}; 0 \right]$.
- 2). Упростить выражение:

$$\cos^2(2\pi - t) + \cos^2(\frac{3\pi}{2} + t)$$

$$\delta). \frac{\cos\left(\frac{\pi}{2} + t\right) \cdot ctg\left(-t\right)}{\sin\left(\frac{\pi}{2} - t\right)}$$

3). Исследуйте функцию на четность:

$$y = \frac{tg\,5x}{3x^{16} - x^2 + 1}$$

4). Постройте график функции:

$$y = \cos\left(x - \frac{\pi}{3}\right) + 2$$

5). Известно, что $f(x) = 3x^2 + 2x - 1$. Докажите, что $f(sinx) = 2sinx - 3cos^2x + 2$.

2 вариант

- 1). Найти наименьшее и наибольшее значения функций:
- a). $y = \sin x$ на отрезке $\left[\frac{\pi}{4}; \frac{5\pi}{3}\right]$;
- б). $y = \cos x$ на отрезке $\left[-\frac{2\pi}{3}; 0 \right]$.
- 2). Упростить выражение:

$$\cos^2(2\pi - t) + \cos^2(\frac{3\pi}{2} + t)$$

$$\tilde{o}). \frac{\cos\left(\frac{\pi}{2} + t\right) \cdot ctg\left(-t\right)}{\sin\left(\frac{\pi}{2} - t\right)}$$

3). Исследуйте функцию на четность:

$$y = \frac{tg5x}{3x^{16} - x^2 + 1}$$

4). Постройте график функции:

$$y = \cos\left(x - \frac{\pi}{3}\right) + 2$$

5). Известно, что $f(x) = 3x^2 + 2x - 1$. Докажите, что $f(sinx) = 2sinx - 3cos^2x + 2$.

1 вариант

1). Решить уравнение:

a).
$$2\sin x + \sqrt{2} = 0$$
;

$$\delta$$
). $\cos\left(\frac{x}{2} + \frac{\pi}{4}\right) + 1 = 0;$

e).
$$\cos(2\pi - x) - \sin\left(\frac{3\pi}{2} + x\right) = 1$$

$$\varepsilon). \sin x \cos x + 2\sin^2 x = \cos^2 x$$

- 2). Найти корни уравнения $\sin^2 x 2\cos x + 2 = 0$ на отрезке $[-5\pi; 3\pi]$.
- 3). Решить уравнение: $3\sin^2 x - 4\sin x \cos x + 5\cos^2 x = 2$
- 4). Найти корни уравнения $\sin 3x = \cos 3x$, принадлежащие отрезку [0;4].

2 вариант

1). Решить уравнение:

a).
$$2\cos x + \sqrt{3} = 0$$
;

6).
$$\sin\left(2x - \frac{\pi}{3}\right) + 1 = 0;$$

$$s$$
). $\sin(2\pi - x) - \cos(\frac{3\pi}{2} + x) + 1 = 0$

$$\varepsilon). 3\sin^2 x = 2\sin x \cos x + \cos^2 x$$

2). Найти корни уравнения $\cos^2 x + 3\sin x - 3 = 0$ на отрезке $[-2\pi; 4\pi]$.

3). Решить уравнение:

$$5\sin^2 x - 2\sin x \cos x + \cos^2 x = 4$$

4). Найти корни уравнения $\sin 2x = \sqrt{3}\cos 2x$, принадлежащие отрезку [-1; 6].

Контрольная работа «Преобразование тригонометрических выражений»

1 вариант

1). Вычислить:

a). $\sin 58^{\circ} \cos 13^{\circ} - \cos 58^{\circ} \sin 13^{\circ}$;

6).
$$\cos \frac{\pi}{12} \cos \frac{7\pi}{12} - \sin \frac{\pi}{12} \sin \frac{7\pi}{12}$$

2). Упростить выражение:

a). $\cos(t-x)-\sin t \sin x$;

$$6). \ \frac{1}{2}\cos t - \sin\left(\frac{\pi}{6} + t\right).$$

3). Доказать тождество:

$$\sin(\alpha + \beta) + \sin(\alpha - \beta) = 2\sin\alpha\cos\beta$$

4). Решить уравнение

a). $\sin 3x \cos x + \cos 3x \sin x = 0$

$$6). \frac{tg 4x - tg 3x}{1 + tg 4xtg 3x} = \sqrt{3}$$

5). Зная, что $\sin \alpha = -\frac{12}{13}$ и $\pi < \alpha < \frac{3\pi}{2}$, найти

$$tg\left(\frac{\pi}{4}-\alpha\right).$$

2 вариант

1). Вычислите:

a).
$$\sin \frac{\pi}{5} \cos \frac{3\pi}{10} + \cos \frac{\pi}{5} \sin \frac{3\pi}{10}$$
;

 δ). $\cos 78^{\circ} \cos 108^{\circ} + \sin 78^{\circ} \sin 108^{\circ}$

2). Упростить выражение:

a).
$$\cos(\alpha - \beta) + \cos \alpha \sin \beta$$
;

$$\delta$$
). $\frac{1}{2}\sin\alpha + \cos\left(\frac{\pi}{6} + \alpha\right)$.

3). Доказать тождество:

$$\cos(\alpha + \beta) + \cos(\alpha - \beta) = 2\cos\alpha\cos\beta$$

4). Решить уравнение

a). $\cos 2x \cos x - \sin 2x \sin x = 0$

$$6). \frac{tgx + tg2x}{1 - tgxtg2x} = 1$$

5). Зная, что $\sin \alpha = \frac{12}{13}$ и $0 < \alpha < \frac{\pi}{2}$, найти

$$tg\left(\frac{\pi}{4}+\alpha\right)$$
.

Контрольная работа «Преобразование тригонометрических выражений»

1 вариант

- 1). Вычислить:
- a). $\sin 58^{\circ} \cos 13^{\circ} \cos 58^{\circ} \sin 13^{\circ}$;

6).
$$\cos \frac{\pi}{12} \cos \frac{7\pi}{12} - \sin \frac{\pi}{12} \sin \frac{7\pi}{12}$$

- 2). Упростить выражение:
- a). $\cos(t-x)-\sin t \sin x$;

$$\tilde{o}). \ \frac{1}{2}\cos t - \sin\left(\frac{\pi}{6} + t\right).$$

3). Доказать тождество:

$$\sin(\alpha + \beta) + \sin(\alpha - \beta) = 2\sin\alpha\cos\beta$$

4). Решить уравнение

a). $\sin 3x \cos x + \cos 3x \sin x = 0$

$$6). \frac{tg 4x - tg 3x}{1 + tg 4xtg 3x} = \sqrt{3}$$

5). Зная, что $\sin \alpha = -\frac{12}{13}$ и $\pi < \alpha < \frac{3\pi}{2}$, найти $tg\left(\frac{\pi}{4} - \alpha\right)$.

2 вариант

1). Вычислите:

a).
$$\sin\frac{\pi}{5}\cos\frac{3\pi}{10} + \cos\frac{\pi}{5}\sin\frac{3\pi}{10}$$
;

- δ). $\cos 78^{\circ} \cos 108^{\circ} + \sin 78^{\circ} \sin 108^{\circ}$
- 2). Упростить выражение:
- a). $\cos(\alpha \beta) + \cos \alpha \sin \beta$;

$$\delta$$
). $\frac{1}{2}\sin\alpha + \cos\left(\frac{\pi}{6} + \alpha\right)$.

3). Доказать тождество:

$$\cos(\alpha + \beta) + \cos(\alpha - \beta) = 2\cos\alpha\cos\beta$$

- 4). Решить уравнение
- a). $\cos 2x \cos x \sin 2x \sin x = 0$

$$6). \frac{tgx + tg2x}{1 - tgxtg2x} = 1$$

5). Зная, что $\sin \alpha = \frac{12}{13}$ и $0 < \alpha < \frac{\pi}{2}$, найти

$$tg\left(\frac{\pi}{4}+\alpha\right)$$
.

Контрольная работа

1 вариант

- 1). Найдите производную функции:
- a). $y = x^4$;
- 6). y = 4;
- $\partial). \quad y = 2\cos x 4\sqrt{x} .$
- 2). Найдите угол, который образует с положительным лучом оси абсцисс касательная к графику

функции $y = \frac{x^{10}}{10} - \frac{x^7}{7} + x\sqrt{3} - 2$ в точке $x_0 = 1$.

- 3). Прямолинейное движение точки описывается законом $s = t^4 - 2t^2$. Найдите ее скорость в момент времени t=3c.
- 4). Дана функция $y = x^3 3x^2 + 4$.

Найлите:

- а). Промежутки возрастания и убывания функции;
- б). Точки экстремума;
- в). Наибольшее и наименьшее значения функции на отрезке [-1;4].

1 вариант

- 1). Найдите производную функции: 6). y = 4;
- a). $y = x^4$;

- 6). $y = -\frac{3}{x}$; 2). y = 3x + 2;
- $\partial). \quad y = 2\cos x 4\sqrt{x} \ .$
- 2). Найдите угол, который образует с положительным лучом оси абсцисс касательная к графику функции $y = \frac{x^{10}}{10} - \frac{x^7}{7} + x\sqrt{3} - 2$ в точке $x_0 = 1$.
- 3). Прямолинейное движение точки описывается законом $s = t^4 - 2t^2$. Найдите ее скорость в момент времени t=3c.
- 4). Дана функция $y = x^3 3x^2 + 4$.

Найдите:

- а). Промежутки возрастания и убывания функции;
- б). Точки экстремума;
- в). Наибольшее и наименьшее значения функции на отрезке [-1;4].

2 вариант

- 1). Найдите производную функции:
- a). $y = x^7$;
- б). y = 5;
- B). $y = -\frac{6}{r}$; Γ). y = 4x + 5;
- Д). $y = \sin x + 0.5\sqrt{x}$.
- 2). Найдите угол, который образует с положительным лучом оси абсцисс касательная к графику

функции $y = \frac{x^8}{8} - \frac{x^5}{5} - x\sqrt{3} - 3$ в точке $x_0 = 1$.

- 3). Прямолинейное движение точки описывается законом $s = t^6 - 4t^4$. Найдите ее скорость в момент времени t = 2c.
- 4). Дана функция $y = 0.5x^4 4x^2$.

Найдите:

- а). Промежутки возрастания и убывания функции;
- б). Точки экстремума;
- в). Наибольшее и наименьшее значения функции на отрезке [-1;3].

2 вариант

- 1). Найдите производную функции:
- a). $y = x^7$;
- б). y = 5;
- B). $y = -\frac{6}{r}$; Γ). y = 4x + 5;
- д). $y = \sin x + 0.5\sqrt{x}$.
- 2). Найдите угол, который образует с положительным лучом оси абсцисс касательная к графику

функции $y = \frac{x^8}{9} - \frac{x^5}{5} - x\sqrt{3} - 3$ в точке $x_0 = 1$.

- 3). Прямолинейное движение точки описывается законом $s = t^6 - 4t^4$. Найдите ее скорость в момент времени t = 2c.
- 4). Дана функция $y = 0.5x^4 4x^2$.

Найлите:

- а). Промежутки возрастания и убывания функции;
- б). Точки экстремума;
- в). Наибольшее и наименьшее значения функции на отрезке [-1;3].

Контрольная работа № 7 (итоговая)

1 вариант

1). Дана функция $f(x) = \frac{1}{2} \sin\left(4x - \frac{\pi}{3}\right)$. Составить уравнение касательной к графику в точке с абсциссой $x = \frac{\pi}{6}$. Установить, в каких точках промежутка $[0;\pi]$ касательная к графику данной функции составляет с осью Ox угол 60^{0} .

2). Решите уравнение:

$$ctgx - \sin x = 2\sin^2 \frac{x}{2}$$

- 3). Упростите выражение:
- a). $\cos 4x \sin 4x \cdot ctg 2x$;

$$\delta). \ \frac{1+ctg\,2x\cdot ctgx}{tgx+ctgx}$$

4). Постройте график функции с полным исследованием функции $y = 2x^3 + 3x^2 - 1$.

2 вариант

1). Дана функция $f(x) = \frac{2}{3}\cos\left(3x - \frac{\pi}{6}\right)$. Составить уравнение касательной к графику в точке с абсциссой $x = \frac{\pi}{3}$. Установить точки минимума и максимума, а также наибольшее и наименьшее значение на промежутке $[0;\pi]$.

2). Решите уравнение:

$$\sin 2x = \cos^4 \frac{x}{2} - \sin^4 \frac{x}{2}$$

- 3). Упростите выражение:
- a). $\sin^6 x + \cos^6 x + 3\sin^2 x \cos^2 x$;
- $6). \ \frac{tg2x}{tg4x-tg2x}.$
- 4). Постройте график функции с полным исследованием функции $y = x^3 3x^2 + 2$.